2,611 research outputs found

    Sources of variations in total column carbon dioxide

    Get PDF
    Observations of gradients in the total CO_2 column, (CO2), are expected to provide improved constraints on surface fluxes of CO_2. Here we use a general circulation model with a variety of prescribed carbon fluxes to investigate how variations in (CO_2) arise. On diurnal scales, variations are small and are forced by both local fluxes and advection. On seasonal scales, gradients are set by the north-south flux distribution. On synoptic scales, variations arise due to large-scale eddy-driven disturbances of the meridional gradient. In this case, because variations in (CO_2) are tied to synoptic activity, significant correlations exist between (CO_2) and dynamical tracers. We illustrate how such correlations can be used to describe the north-south gradients of (CO_2) and the underlying fluxes on continental scales. These simulations suggest a novel analysis framework for using column observations in carbon cycle science

    The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995â 2013

    Full text link
    Aerosol optical depth (AOD) has been shown to influence the global carbon sink by increasing the fraction of diffuse light, which increases photosynthesis over a greater fraction of the vegetated canopy. Between 1995 and 2013, U.S. SO2 emissions declined by over 70%, coinciding with observed AOD reductions of 3.0â ±â 0.6% yrâ 1 over the eastern U.S. In the Community Earth System Model (CESM), these trends cause diffuse light to decrease regionally by almost 0.6% yrâ 1, leading to declines in gross primary production (GPP) of 0.07% yrâ 1. Integrated over the analysis period and domain, this represents 0.5 Pgâ C of omitted GPP. A separate upscaling calculation that used published relationships between GPP and diffuse light agreed with the CESM model results within 20%. The agreement between simulated and dataâ constrained upscaling results strongly suggests that anthropogenic sulfate trends have a small impact on carbon uptake in temperate forests due to scattered light.Key PointsAerosol optical depth has decreased due to reduced sulfur dioxide emissionsReduced diffuse radiation decreased cumulative gross primary productivity by 0.5 Pg C during 1995â 2013CESM trends agree with upscaled flux tower results within 20%Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134448/1/grl55002.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134448/2/grl55002-sup-0001-supinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134448/3/grl55002_am.pd

    Associating object names with descriptions of shape that distinguish possible from impossible objects.

    Get PDF
    Five experiments examine the proposal that object names are closely linked torepresentations of global, 3D shape by comparing memory for simple line drawings of structurally possible and impossible novel objects.Objects were rendered impossible through local edge violations to global coherence (cf. Schacter, Cooper, & Delaney, 1990) and supplementary observations confirmed that the sets of possible and impossible objects were matched for their distinctiveness. Employing a test of explicit recognition memory, Experiment 1 confirmed that the possible and impossible objects were equally memorable. Experiments 2–4 demonstrated that adults learn names (single-syllable non-words presented as count nouns, e.g., “This is a dax”) for possible objectsmore easily than for impossible objects, and an item-based analysis showed that this effect was unrelated to either the memorability or the distinctiveness of the individual objects. Experiment 3 indicated that the effects of object possibility on name learning were long term (spanning at least 2months), implying that the cognitive processes being revealed can support the learning of object names in everyday life. Experiment 5 demonstrated that hearing someone else name an object at presentation improves recognition memory for possible objects, but not for impossible objects. Taken together, the results indicate that object names are closely linked to the descriptions of global, 3D shape that can be derived for structurally possible objects but not for structurally impossible objects. In addition, the results challenge the view that object decision and explicit recognition necessarily draw on separate memory systems,with only the former being supported by these descriptions of global object shape. It seems that recognition also can be supported by these descriptions, provided the original encoding conditions encourage their derivation. Hearing an object named at encoding appears to be just such a condition. These observations are discussed in relation to the effects of naming in other visual tasks, and to the role of visual attention in object identification

    Alpha Emitter Intrinsic Concentration in Copper required for Nuclear Spectrometry Application

    Get PDF
    Low-level radioactivity content in copper are employed for bolometric thermal radiation sensors and astro-nuclear spectrometers. The required lowest achievable alpha emitters concentration, for treated and untreated surfaces, are measured by Double Sided Silicon Strip Detectors in a high vacuum chamber and provide information on its intrinsic NORM content. Results shows that copper alpha emitters content can be achieved in the range below 0.01 (counts. keV-š¡kg-š¡y-š) adequate for specific nuclear spectrometry applications

    Self-Consistent Data Analysis of the Proton Structure Function g1 and Extraction of its Moments

    Full text link
    The reanalysis of all available world data on the longitudinal asymmetry A|| is presented. The proton structure function g1 was extracted within a unique framework of data inputs and assumptions. These data allowed for a reliable evaluation of moments of the structure function g1 in the Q2 range from 0.2 up to 30 GeV2. The Q2 evolution of the moments was studied in QCD by means of Operator Product Expansion (OPE).Comment: Proceeding of 3rd International Symposium on the Gerasimov-Drell-Hearn Sum Rule and its extensions, Old Dominion University, Norfolk, Virginia June 2-5, 200

    Nuclear corrections in neutrino-nucleus DIS and their compatibility with global NPDF analyses

    Full text link
    We perform a global chi^2-analysis of nuclear parton distribution functions using data from charged current neutrino-nucleus deep-inelastic scattering (DIS), charged-lepton-nucleus DIS, and the Drell-Yan (DY) process. We show that the nuclear corrections in nu-A DIS are not compatible with the predictions derived from l^+A DIS and DY data. We quantify this result using a hypothesis-testing criterion based on the chi^2 distribution which we apply to the total chi^2 as well as to the chi^2 of the individual data sets. We find that it is not possible to accommodate the data from nu-A and l^+A DIS by an acceptable combined fit. Our result has strong implications for the extraction of both nuclear and proton parton distribution functions using combined neutrino and charged-lepton data sets.Comment: 5 page

    Pruning or Tuning? Maturational Profiles of Face Specialization During Typical Development

    Get PDF
    Introduction: Face processing undergoes significant developmental change with age. Two kinds of developmental changes in face specialization were examined in this study: specialized maturation, or the continued tuning of a region to faces but little change in the tuning to other categories; and competitive interactions, or the continued tuning to faces accompanied by decreased tuning to nonfaces (i.e., pruning). Methods: Using fMRI, in regions where adults showed a face preference, a face- and object-specialization index were computed for younger children (5-8 years), older children (9-12 years) and adults (18-45 years). The specialization index was scaled to each subject\u27s maximum activation magnitude in each region to control for overall age differences in the activation level. Results: Although no regions showed significant face specialization in the younger age group, regions strongly associated with social cognition (e.g., right posterior superior temporal sulcus, right inferior orbital cortex) showed specialized maturation, in which tuning to faces increased with age but there was no pruning of nonface responses. Conversely, regions that are associated with more basic perceptual processing or motor mirroring (right middle temporal cortex, right inferior occipital cortex, right inferior frontal opercular cortex) showed competitive interactions in which tuning to faces was accompanied by pruning of object responses with age. Conclusions: The overall findings suggest that cortical maturation for face processing is regional-specific and involves both increased tuning to faces and diminished response to nonfaces. Regions that show competitive interactions likely support a more generalized function that is co-opted for face processing with development, whereas regions that show specialized maturation increase their tuning to faces, potentially in an activity-dependent, experience-driven manner

    Titanium Nitride Coating as a Multipactor Suppressor on RF Coupler Ceramic Windows

    No full text
    International audienceLAL-Orsay is developing an important effort on R&D studies on RF power couplers. One of the most critical components of those devices is the ceramic RF window that allows the power flux to be injected in the coaxial line. The presence of a dielectric window on a high power RF line has a strong influence on the multipactor phenomena. To reduce this effect, the decrease the secondary emission yield (SEY)of the ceramic window is needed. Due to its low SEY coefficient, TiN coating is used for this goal. In this framework, a TiN sputtering bench has been developed in LAL. The reactive sputtering of TiN needs the optimisation of gas flow parameters and electrical one, to obtain stoechiometric deposit. XRD analysis was performed to control the film composition and stoechiometry. Measurements point out how the Nitrogen vacancy on the film can be controlled acting on the N2 flow. In addition, the coating thickness must be optimized so that the TiN coating effectively reduces the SEY coefficient but does not cause excessive heating, due to ohmic loss. For this purposes, multipactor level breakdown and resistance measurements were done for different deposit thickness

    Emissions of greenhouse gases from a North American megacity

    Get PDF
    Atmospheric column abundances of carbon dioxide (CO_2), carbon monoxide (CO), methane (CH_4) and nitrous oxide (N_2O) have been measured above the South Coast air basin (SCB), a densely populated urban region of Southern California, USA, which includes Los Angeles and the surrounding suburbs. Large diurnal variations in CO and CH_4 are observed which correlate well with those in CO_2. Weaker correlations are seen between N_2O and CO_2, with large uncertainties. We compute yearly SCB emissions of CO and CH_4 to be 1.4 ± 0.3 Tg CO and 0.6 ± 0.1 Tg CH_4. We compare our calculated emissions to the California Air Resources Board (CARB) and the Emission Database for Global Atmospheric Research (EDGAR) estimates. Our measurements confirm that urban emissions are a significant source of CH_4 and in fact may be substantially higher than currently estimated. If our emissions are typical of other urban centers, these findings suggest that urban emissions could contribute 7–15% to the global anthropogenic budget of methane

    Nuclear PDFs from neutrino deep inelastic scattering

    Get PDF
    We study nuclear effects in charged current deep inelastic neutrino-iron scattering in the frame-work of a chi^2 analysis of parton distribution functions. We extract a set of iron PDFs and show that under reasonable assumptions it is possible to constrain the valence, light sea and strange quark distributions. Our iron PDFs are used to compute x_{Bj}-dependent and Q^2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. We compare our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for charged lepton-iron scattering. We find that, except for very high x_{Bj}, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering.Comment: 25 pages, 10 figures; minor updates to match published versio
    • …
    corecore